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Abstract

We study the calibration properties of multi-
expert learning to defer (L2D). In particular,
we study the framework’s ability to estimate
P(m; = y|a), the probability that the jth expert
will correctly predict the label for . We compare
softmax- and one-vs-all-parameterized L2D, find-
ing the former causes mis-calibration to propagate
between the estimates of expert correctness while
the latter’s parameterization does not.

1. Introduction

In human-machine collaboration, the primary challenge is
often thought to be when to rely on the machine vs the hu-
man. Yet when there are multiple experts, there are two
decisions to be made: when to defer and to whom to defer.
Some experts may perform better than the model but per-
haps others will not. Thus assessing and monitoring expert
quality is an important sub-task.

In this work, we analyze the forecasting properties of a
hybrid intelligence system (Kamar, 2016) involving multi-
ple experts (Keswani et al., 2021). In particular, we study
the calibration properties of multi-expert learning to de-
Sfer (Madras et al., 2018). We compare the softmax-based
(Mozannar & Sontag, 2020) and one-vs-all-based (Verma &
Nalisnick, 2022) formulations, finding that due to the for-
mer’s tied parameterization, calibration error can propagate
across experts. The one-vs-all parameterization does not
have this behavior due to its independence assumptions. We
perform experiments on simulated (mixture of Gaussians)
and real (CIFAR-10) data showcasing the consequence of
this difference. Ultimately, we find that the softmax param-
eterization becomes increasingly poorly calibrated as the
number of experts in the system increases.
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2. Learning To Defer to Multiple Experts

Data We first define the data for multi-class, multi-expert
learning to defer (L2D). Let X denote the feature space,
and let Y denote the output space, which we will always
assume to be a categorical encoding of multiple (K) classes.
We assume that we have samples from the true generative
process: x, € X denotes a feature vector, and y,, € YV
denotes the associated class defined by ) (1 of K). The
L2D problem also assumes that we have access to (usu-
ally human) expert demonstrations. Let there be .J experts,
and denote each expert’s prediction space as M, which
is usually taken to be equal to the label space: M; = ).
The expert demonstrations are denoted m,, ; € M for the
associated features x,,. The combined N-element training
sample is D = {&y, Yn, Mn.1,- -, Mg 1.

Models The L2D framework is built from the classifier-
rejector approach (Cortes et al., 2016a;b). The goal is to
learn two functions: the classifier, h : X — ), and the
rejector. In L2D with one expert, the rejector makes a
binary decision—to defer or not—but in multi-expert L2D,
the rejector also must choose to which expert to assign the
instance. Let the rejector be denoted r : X — {0,1,...,J}.
When r(x) = 0, the classifier makes the decision in the
typical way. When r(x) = j, the classifier abstains and
defers the decision to the jth expert.

Softmax Surrogate Loss The learning problem requires
fitting both the rejector and classifier. Mozannar & Son-
tag (2020) proposed the first consistent surrogate loss for
L2D. They accomplish this by first unifying the classifier
and rejector via an augmented label space that includes the
rejection option. Formally, this label space is defined as
Y+ =YU{Ly,..., L} where L; denotes the decision
to defer to the jth expert. Secondly, Mozannar & Son-
tag (2020) use a reduction to cost sensitive learning that
ultimately resembles the cross-entropy loss for a softmax
parameterization.

While the multi-expert setting was not investigated by
Mozannar & Sontag (2020), it is straightforward to extend
their formulation to include J experts. Let the classifier
be composed of K functions: g : X — R for k € [1, K]
where k£ denotes the class index. The rejector is imple-
mented with J functions: g, ; : X — R for j € [1,J]
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where j is the expert index. These K + J functions are then
combined via the following softmax-parameterized loss:
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The intuition is that the first term maximizes the func-
tion gi associated with the true label. The second term
maximizes the rejection function g ; but only if the jth
expert’s prediction is correct. At test time, the classi-
fier is obtained by taking the maximum over k € [1, K]:
§ = h(z) = arg max, ¢y g gk (). The rejection function
is similarly formulated as

r(x) = {

Using the same proof techniques as for the single expert
setting, ¢y is shown to be a convex (in g) and consis-
tent surrogate loss for 0 — 1-cost multi-expert L2D. The
minimizers g7, ..., 9%, 9] 1,---,9} s resultin the optimal
classifier and rejector, satiéfying: 7

0 if 9h(x) > 91,5 vj/ € [LJ]
argmax; e, s gL,j(x) otherwise.

h*(z) = argmax P(y = y|x),

yey
@y | OB =0 @) > Bmy = yla) v
T =
argmax;cp s P(m; = y|x) otherwise,
where P(y|x) is the probability of the label under the data
generating process, and IP(m; = y|x) is the probability that
the jth expert is correct.
One-vs-All Surrogate Loss Verma & Nalisnick (2022)
proposed an alternative consistent surrogate for L2D based

on a one-vs-all (OvA) formulation. It too can be straightfor-
wardly extended to the multi-expert setting:
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where ¢ : {1} x R — R, is a binary surrogate loss. For
instance, when ¢ is the logistic loss, we have ¢[f(x)] =
log(1 + exp{—f(x)}). The g-functions are entirely the
same, and the classifier and rejector are computed exactly
as in the softmax case.

3. Calibration of Expert Confidence

For both types of L2D parameterizations, we are interested
in studying the calibration of the system (Dawid, 1982).
In particular, we are interested in the model’s ability to
estimate P(m; = y|x), the probability that the jth expert is
correct for a particular instance. If the L2D system says that
P(m; = y|xo) = 0.7, then the jth expert should be correct
70% of the time for inputs very similar to a¢. This quantity
is crucial not only for the system’s ability to correctly defer
but is also useful for interpretability and safety—to quantify
what the model thinks the human knows. Our study is
inspired by the work of Verma & Nalisnick (2022), who
found that the Mozannar & Sontag (2020) parameterization
can result in poor estimators in practice, despite having
valid Bayes optimal solutions. We wish to examine each
parameterization’s behavior in the multi-expert formulation.

3.1. Softmax Parameterization

In the Mozannar & Sontag (2020) formulation, the estimator
of the probability that the jth expert is correct can be derived
as follows; see Appendix B.1 for a complete derivation. For
the Bayes optimal functions g7, ..., g7 ;. we have:

P(m; = ylz) _
1+ P(my = y|a)
exp{g7] ;} (1)
Y yeye expig (z)}
ph (@)

Denote the RHS of Equation 1 as p| ;(x). Since we have

J equations, one for each expert, we can uniquely solve for

P(m; = y|x) as:

_ s (z)
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Due to the denominator involving the quantity p’, ;(z) for
all experts, there is dependence across the estimators.

IP’(mj

=ylz) 2)

For the single expert softmax parameterization, Verma &
Nalisnick (2022) observed that the estimated probability
of expert correctness could be degenerate—that is, greater
than one. We see the exact same issue in Equation 2: for
pi(x) >0, as Z}]/:1 p ;v (x) approaches one, the esti-
mate for P(m; = y|x) will go to infinity. Of course, the
model will no longer be at its Bayes optimal configuration
if this degeneracy occurs, so in the experiments we will test
if this degeneracy can occur in practice.

3.2. One-vs-All Parameterization

For the OVA formulation (Verma & Nalisnick, 2022), the
probability that the expert is correct is directly modeled by
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the jth deferral function. For the logistic binary loss ¢, it is
given as:

1
L+ exp{—g] ;(z)}

P(m; =ylz) = 3
This estimator has the correct range of (0, 1) for any setting
of g1 ; € R. Moreover, there is no dependence across
expert deferral functions g 1,...,91,7.

4. Related Work

Calibration has been identified as important to fostering
trust in hybrid intelligence systems (Schmidt & Biessmann,
2020; Zhang et al., 2020) While recent work has studied
multi-expert rejector-classifier systems (Grgnsund & Aanes-
tad, 2020; Keswani et al., 2021), none has examined their
calibration properties. Verma & Nalisnick (2022) study
calibration in the single-expert L2D setting, which directly
motivates this work.

5. Experiments

We perform experiments on synthetic data and on the
CIFAR-10 dataset. In both cases, we measure calibration
according to the expected calibration error (ECE):

ECE(py ;) = Ex|P (m; =y | p1 (%) = ¢) = ¢|.

Since the softmax parameterization can result is probability
estimates greater than one, we cap confidences at 1.0 to
calculate ECE in all experiments. First, we study the effect
of gradually increasing the number of experts on the overall
calibration of the system. Second, we examine how different
expert’s behavior affects other expert estimates. Our results
suggest that systems trained with the softmax surrogate
exhibit degradation in calibration as the number of experts
increases. Furthermore, other experts in the committee
significantly affect the calibration of other experts.

5.1. Datasets and Models

Mixture of Gaussians For the synthetic dataset, we gen-
erate a mixture of Gaussians (MoG) with 4 clusters. The
data is plotted in Figure 3. It shows severe overlap between
cluster 2 and cluster 3, and thus these clusters represent
where the expert’s advice might be required. The other
two clusters have small overlap and can be discriminated
by a simple classifier. For the classifier, we use a small
feedforward neural network with four layers. We train it
using stochastic gradient descent (SGD) with early stopping
(look-ahead of 20 epochs).

CIFAR-10 For the experiments using CIFAR-10, we use
the canonical train-test split (Krizhevsky, 2009). We par-
tition the training split 90% — 10% to form training and

validation sets, respectively. We use the same neural net-
work and training settings for both the OvA and softmax
methods as described in Mozannar & Sontag (2020). We
use a wide residual networks (Zagoruyko & Komodakis,
2016) to parameterize the g(x) functions. We train a 28-
layer network using SGD with momentum and a cosine
annealing schedule for the learning rate. We again employ
early stopping with 20 look-ahead epochs.

5.2. Effect of Increasing Number of Experts

We first examine calibration under an increasing number
of experts—from 1 to 8. For the MoG dataset, the experts
are oracles if an instance belongs to either cluster 3 or 4
and predict randomly over all classes otherwise. For the
CIFAR-10 dataset, the experts are an oracle for the first 5
classes and predict randomly over all 10 classes otherwise.

The results are reported in Figure 1 (a, b, d, e). Firstly, exam-
ine subfigures (b) and (e), which report the system accuracy
to ensure both parameterizations are well-performing. We
see that the OVA parameterization is slightly-to-moderately
superior in all cases. Moving on to the calibration results,
the ECE is reported in subfigures (a) and (d). We see that the
OvVA parameterization (orange) is roughly stable w.r.t. ex-
pert size, but the softmax (blue) ECE tends to increase. This
behavior is expected for the softmax according to Equation
2. With the addition of more experts, the denominator be-
comes smaller, leading to overconfident (and degenerate)
estimates for P(m; = y|x). However, we do see some can-
cellation effect with the addition of second expert in Figure
1 (d). This can be explained by the fact that adding more ex-
perts constrains the confidence allocation to multiple experts
(due to the tied nature of the softmax parameterization). But
the effect dissipates for 4 or more experts, with the ECEs
continuing to increase.

5.3. Expert Dependence

We further aim to assess calibration when there is a gap in
expert quality. We simulate four experts with one always
being random and the other three having an increasing prob-
ability of correctness (20% - 95%). For the MoG dataset,
three experts will increase their probability of being correct
on two of the clusters and predict randomly for the other
two. For CIFAR-10, three experts increase their probability
of being correct in the first five classes and predict randomly
for the other ten classes. We hypothesize that for the soft-
max, the calibration of the random expert will increase when
the probability of correctness for the other three experts in-
creases due to the tied parameterization. We conjecture that
no such dependence will be present in the OVA results.

The results are reported in the third column of Figure 1.
We see that the ECE for the random expert dramatically
increases for both datasets for the softmax parametrization
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Figure 1. Calibration and System Accuracy on Simulated Data and CIFAR-10. The first column reports ECE under an increasing number
of experts, the second column the system accuracy, and the third column the ECE to show the dependence across experts. The top row
shows results for the mixture of Gaussians simulation, and the bottom row shows results for CIFAR-10.
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Figure 2. Calibration and System Accuracy on CIFAR-10. Subfig-
ure (a) reports the ECE when an increasing number of specialized
experts are incorporated. Subfigure (b) reports the system accuracy
under the same conditions.

(blue), reaching values above 40%. Yet for OvA (orange),
the ECE is nearly flat for both datasets due its explicit in-
dependence across experts. This supports our hypothesis
from above that the softmax parameterization will skew per-
expert estimation due to its dependencies across experts.

5.4. Specialized Experts

For our final experiment, we examine calibration when the
experts have non-overlapping expertise. For CIFAR-10,
each expert is simulated to be an oracle on two of the ten
classes. Figure 2 reports the average ECE across experts (a)
and the system accuracy (b) as the number of specialized
experts increases. For system accuracy, both methods are
competitive, with OvVA (orange) having a slight edge. For
ECE, OvA is again clearly superior by being stable across
the number of experts. Thus we see that despite the experts
having independent expertise, the softmax parameterization
still accumulates calibration errors.

6. Conclusions and Future Work

We have demonstrated on simulated and real data that the
softmax parameterization of multi-expert L2D exhibits cal-
ibration error, especially for an increasing number of ex-
perts. The OvA parameterization, on the other hand, is
much more stable for multiple experts. We believe that this
is explained by the softmax’s estimator having dependencies
across experts, which causes errors to propagate. Studying
multi-expert deferral systems where experts can collaborate,
faithfully communicate with each other, etc. remains an
open problem. It would also be interesting to study estab-
lishing synergies between multiple experts who might have
different information and work under different assumptions.
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A. Mixture of Gaussian Dataset
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Figure 3. Generated Mixture of Gaussian dataset. The dataset represents varying level of complexity for the simple classifier with cluster
2 and cluster 3 demonstrating severe overlap conducive to querying the expert for correct prediction. The other two clusters are easy to be
learned by the classifier.

B. Multi-Expert Learning to Defer: Further Details

The Multi-Expert Learning to Defer setup as studied in this paper is a straightforward extension of Learning to Defer
framework proposed and analysed in Mozannar & Sontag (2020) and Verma & Nalisnick (2022). As such the argument
for the optimal rejector and classifier of the Multi-Expert Learning to Defer can also be straightforwardly drawn from
Proposition 9 of Mozannar & Sontag (2020). According to the proof of Proposition 9 in their paper, we should defer to
the expert only if the expected loss of expert making the prediction is less than that of the classifier. This argument can
be extended to multi-expert setting that, among all the J experts, the system should compare the expected loss of each of
the expert and the classifer, and defer to j* expert if the expected loss of the j** expert is less than expected loss of the
classifier. Thus, we get the following Bayes optimal classifier (h*(x)) and rejector (r*(x)):

h*(x) = argmax P(y = y|x),
yey

vy | VRO = @) > Pl = yla) v
argmax;cp s P(m; = y|x) otherwise,

where P(y|x) is the probability of the label under the data generating process, and P(m; = y|x) is the probability that the
jth expert is correct.

With the above Bayes optimal classifier and the rejector for Multi-Expert Learning to Defer setting, it is again straightforward
to use the argument from Mozannar & Sontag (2020) to conclude that gy is a consistent surrogate loss for multi-expert
Learning to Defer. Similar things can be said for gy based on Verma & Nalisnick (2022).

B.1. Derivation of Eq. 1

The derivation easily follows from the proof of Theorem 2 of Mozannar & Sontag (2020). We follow their proof to write the

risk, denoted as L (g1, ...,9.1.7; T, Y, M1, ..., my), for multi-expert learning to defer as follows:
L(gla"'7gJ_,J;x7yamla"'amJ) =
J
exp{gy(z)} exp{gL ()} )
- ) my(x)log — ) P(m; = ylz)log
yez; Y (nyew exp{gy (z)} ]; ! > yeye exp{gy ()}
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We take the partial derivatives with respect to each g function and set them to 0. Placing in the optimal classifier h*, and
taking derivative with respect to g; and setting it to 0, we get the desired relationship for the optimal g7

P(m; = y|) _ expigl ;} )
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